

NIST

NISTIR 6495

Shear Strength of High-Strength Concrete Walls and Deep Beams

Dat Duthinh

May 2000

Structures Division **Building and Fire Research Laboratory** Gaithersburg, Maryland 20899-8611

NIST

National Institute of **Standards and Technology**

Technology Administration Department of Commerce

QC 100 .056 NO.6495 2000 6,2

NISTIR 6495

Shear Strength of High-Strength Concrete Walls and Deep Beams

Dat Duthinh

May 2000 Structures Division Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8611

U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary TECHNOLOGY ADMINISTRATION Dr. Cheryl L. Shavers, Under Secretary of Commerce for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Director

ABSTRACT

In the last 30 years, the compressive strength of concrete that can be produced reliably in the field has more than doubled, from 35 MPa (5000 psi) to 85 MPa (12 000 psi). Strengths as high as 140 MPa (20 000 psi) can be achieved in the laboratory and, on rare occasions, in the field. Recently, the American Concrete Institute Subcommittee ACI 318-E (Standard Building Code, Shear and Torsion) set up a small working group, which included the author, to investigate barriers to the use of high-strength concrete related to shear strength provisions and to propose appropriate changes to the building code.

This report starts with a review of current shear strength provisions in ACI 318-99 for walls and deep beams. In light of recent tests, the author recommends lifting the ceiling of the square root of concrete compressive strength from the current value of 8.3 MPa (100 psi) to 11 MPa (130 psi) for code provisions that govern the shear strength of deep beams. However, there are insufficient data to propose any change to the current provisions governing the shear strength of walls.

Keywords: building code, cyclic tests, deep beams, high-strength concrete, shear strength, shear walls, static tests.

TABLE OF CONTENTS

ABSTRACT	iii
1 INTRODUCTION	1
2 DEEP BEAMS	1
2.1 Current Provisions	1
2.2 Tests of HSC Deep Beams	2
2.3 Recommendations.	2
3 Walls	3
3.1 Current provisions	3
3.2 Tests of HSC Shear Walls	4
3.3 Recommendation	5
4 NOTATION	6
5 REFERENCES	7

1 INTRODUCTION

In the fall of 1998, the American Concrete Institute (ACI) Committee 318 (Standard Building Code), Subcommittee E (Shear and Torsion) formed a small task group to investigate barriers to the use of high-strength concrete in the shear design of structural members. The mission of the task group was to recommend to Committee 318 updates to Chapter 11, "Shear and Torsion", of ACI 318-99, in particular § 11.1.2, which limits the square root of the concrete compressive strength that may be used to calculate the concrete contribution to shear strength to 8.3 MPa (100 psi), unless minimum shear reinforcement is increased. The members of the task group consisted of Henry Russell (Henry G. Russell, Inc.), chairman, Dat Duthinh (NIST), Daniel Kuchma (University of Illinois, Urbana-Champaign), and David Sanders (University of Nevada, Reno). The purpose of this report is to document the task undertaken by NIST, namely, the update of ACI 318-99 shear strength design provisions to high-strength concrete (HSC) walls and deep beams.

2 DEEP BEAMS

2.1 Current Provisions

Current design provisions for shear strength of deep beams are presented in ACI 318-99 § 11.8 and apply to beams with l_n / d less than five, and that are loaded on one face and supported on the opposite face (§ 11.8.1. Notations are explained in Section 4). The shear strength of deep beams is limited by Eq. 11-27.

$$\frac{V_n}{\text{lbf}} \le 8 \sqrt{\frac{f_c}{\text{psi}}} \frac{b_w}{\text{in}} \frac{d}{\text{in}} \qquad \text{for} \quad \frac{l_n}{d} < 2 \qquad (11-27a)$$

or

and

$$d \quad \frac{\sqrt{n}}{lbf} \le \frac{2}{3} \left(10 + \frac{t_n}{d} \right) \sqrt{\frac{f_c}{psi}} \frac{b_w}{in} \frac{d}{in} \qquad \text{for} \quad 2 \le \frac{t_n}{d} \le 5 \qquad (11-27b)$$

 $\frac{V_n}{N} \le \frac{1}{18} \left(10 + \frac{l_n}{d} \right) \sqrt{\frac{f_c}{MPa}} \frac{b_w}{mm} \frac{d}{mm} \quad \text{for} \quad 2 \le \frac{l_n}{d} \le 5$

 $\frac{V_n}{N} \le \frac{2}{3} \sqrt{\frac{f_c}{MPa}} \frac{b_w}{mm} \frac{d}{mm} \quad \text{for} \quad \frac{l_n}{d} < 2$

 $V = c \left(l \right) \left[f' \right] b$

The calculation of shear strength consists of the sum of the concrete contribution V_c and the steel contribution V_s , where:

$$\frac{V_c}{\text{lbf}} = \left(3.5 - 2.5\frac{M_u}{V_u d}\right) \left(1.9\sqrt{\frac{f_c}{\text{psi}}} + 2500\ \rho_w \frac{V_u d}{M_u}\right) \frac{b_w}{\text{in}} \frac{d}{\text{in}}$$
(11-29)

or
$$\frac{V_c}{N} = \left(3.5 - 2.5 \frac{M_u}{V_u d}\right) \left(0.16 \sqrt{\frac{f_c}{MPa}} + 2500 \rho_w \frac{V_u d}{M_u}\right) \frac{b_w}{mm} \frac{d}{mm}$$
with
$$\left(3.5 - 2.5 \frac{M_u}{V_u d}\right) \le 2.5$$
and
$$\frac{V_c}{lbf} \le 6 \sqrt{\frac{f_c}{psi}} \frac{b_w}{in} \frac{d}{in}$$
or
$$\frac{V_c}{N} \le \frac{1}{2} \sqrt{\frac{f_c}{MPa}} \frac{b_w}{mm} \frac{d}{mm}$$

 M_u is the factored moment occurring simultaneously with V_u at the critical section. The steel contribution is:

$$V_{s} = \left[\frac{A_{v}}{s}\left(\frac{1+\frac{l_{n}}{d}}{12}\right) + \frac{A_{vh}}{s_{2}}\left(\frac{11-\frac{l_{n}}{d}}{12}\right)\right]f_{y}d$$
(11-30)

Tests of HSC Deep Beams 2.2

Tan et al. (1998) reviewed 233 deep beam tests classified as follows:

133 low-strength deep beams with $f_c' < 40$ MPa (5 800 psi),

32 medium-strength deep beams with 40 MPa (5 800 psi) $\leq f_c \leq 55$ MPa (8 000 psi), and 68 high-strength deep beams with 55 MPa (8000 psi) $\leq f_c' \leq 120$ MPa (17 400 psi).

All beams had shear span to depth ratios a/d < 2.5, were loaded on top by one or two loads, and used normal weight aggregates. Results show that the shear strength provisions in ACI 318-99 produce conservative predictions (Table 1, Fig. 1).

Based on 16 tests of deep beams with 50 MPa (7 250 psi) $\leq f_c' \leq 120$ MPa (17 400 psi), Foster and Gilbert (1998) concluded that the shear strength provisions in ACI 318-99 were conservative (Figs. 1 and 2, Tables 2, 3, 4 and 5). Fig. 1 shows no correlation between the shear strength ratio and f_c '.

2.3 Recommendations

Based on the tests mentioned in the previous section, we recommend to raise the allowable concrete compressive strength for the shear strength of deep beams in ACI 318-99 § 11.1.2 to 120 MPa (17 400 psi). In terms of $\sqrt{f_c}$, approximate $\sqrt{120} \approx 11$ and revise § 11.1.2 to read:

11.1.2 The values of
$$\sqrt{f_c}$$
 used in this chapter shall not exceed 8.3 MPa (100 psi) except as

allowed in 11.1.2.1 and 11.8.1.1.

Add a new provision as follows:

11.8.1.1 The values of $\sqrt{f_c}$ used in 11.8 shall not exceed 11 MPa (130 psi).

3 Walls

Current provisions 3.1

Current provisions for the static shear strength of walls are found in ACI 318-99 § 11.10. The strength V_n for shear in the plane of the wall is limited to (§ 11.10.3):

$$\frac{V_n}{\text{lbf}} \le 10 \sqrt{\frac{f_c}{\text{psi}}} \frac{h}{\text{in}} \frac{d}{\text{in}}$$
or
$$\frac{V_n}{\text{N}} \le 0.83 \sqrt{\frac{f_c}{\text{MPa}}} \frac{h}{\text{mm}} \frac{d}{\text{mm}}$$

The shear strength V_n is the sum of the steel contribution V_s , and the concrete contribution V_c , which is the lesser of Eqs. 11-31 and 11-32:

$$\frac{V_c}{\text{lbf}} = 3.3 \sqrt{\frac{f_c}{\text{psi}}} \frac{h}{\text{in}} \frac{d}{\text{in}} + \frac{N_u}{\text{lbf}} \frac{d}{4} \frac{d}{l_w}$$
(11-31)

or
$$\frac{V_c}{N} = 0.27 \sqrt{\frac{f_c}{MPa}} \frac{h}{mm} \frac{d}{mm} + \frac{N_u}{N} \frac{d}{4 l_w}$$

and
$$\frac{V_c}{\text{lbf}} = \left[0.6\sqrt{\frac{f_c}{\text{psi}}} + \frac{l_w \left(1.25\sqrt{\frac{f_c}{\text{psi}}} + 0.2\frac{N_u}{\text{lbf}}\frac{\text{in}}{l_w}\frac{\text{in}}{h}\right)}{\frac{M_u}{V_u} - \frac{l_w}{2}}\right] \frac{h}{\text{in}} \frac{d}{\text{in}}$$
(11-32)

or
$$\frac{V_c}{N} = \left[0.05 \sqrt{\frac{f'_c}{MPa}} + \frac{l_w \left(0.1 \sqrt{\frac{f'_c}{MPa}} + 0.2 \frac{N_u}{N} \frac{mm}{l_w} \frac{mm}{h} \right)}{\frac{M_u}{V_u} - \frac{l_w}{2}} \right] \frac{h}{mm} \frac{d}{mm}$$

The steel contribution V_s is calculated by:

$$V_s = \frac{A_v f_y d}{s_2} \tag{11-33}$$

d

Current provisions for the seismic shear strength of walls are found in ACI 318-99 §21.6. The nominal shear strength V_n of structural walls is limited by:

$$\frac{V_n}{\text{lbf}} \le \frac{A_{cv}}{\text{in}^2} \left(\alpha_c \sqrt{\frac{f_c}{\text{psi}}} + \rho_n \frac{f_y}{\text{psi}} \right)$$
(21-7)

or

 $\frac{V_n}{N} \le \frac{A_{cv}}{mm^{-2}} \left(\frac{\alpha_c}{12} \sqrt{\frac{f_c}{MPa}} + \rho_n \frac{f_y}{MPa} \right)$

where $\alpha_c = 3.0$ for $\frac{h_w}{l_w} \le 1.5$ $\alpha_c = 2.0$ for $\frac{h_w}{l} \ge 2.0$

and α_c varies linearly between 3.0 and 2.0 for $\frac{h_w}{l_w}$ between 1.5 and 2.0. Furthermore, the shear strength of individual wall piers is limited by (§21.6.4.4):

$$\frac{V_n}{\text{lbf}} \le 10 \ \frac{A_{cp}}{\text{in}^2} \sqrt{\frac{f_c}{\text{psi}}}$$
or
$$\frac{V_n}{N} \le 0.83 \ \frac{A_{cp}}{\text{mm}^2} \sqrt{\frac{f_c}{\text{MPa}}}$$

3.2 Tests of HSC Shear Walls

Wallace (1998) reviewed 37 cyclic tests of shear walls performed in Japan as part of the "New RC" project to study HSC with high-strength steel reinforcement (Tables 6, 7 and Fig. 3). Concrete strength ranged from 55 MPa (7 900 psi) to 137 MPa (19 900 psi). Table 8 and Fig. 4 show that ACI 318-95 (or ACI 318-99) Eq. 21.7 provides conservative estimates of shear strength. Details of the tests can be found in Kabeyasawa and Hiraishi (1998) and in Gupta and Rangan (1996).

Take wall NO. 6 as an example (l_w includes the end piers):

$$\frac{h_w}{l_w} = \frac{2000 \,\mathrm{mm}}{1700 \,\mathrm{mm}} = 1.18$$
, so $\alpha_c = 3.0$

$$V_{n} = A_{cv} \left(3 \sqrt{f_{c}} + \rho_{n} f_{y} \right)$$

$$V_{n} = 66.93 \times 3.15 \left(3 \sqrt{10745} + \frac{1.795}{78.74 \times 3.15} \times 205.900 \right)$$

$$V_{n} = 379.720 \text{ lbf} = 1689 \text{ kN}$$

However, the limit of individual walls governs:

 $V_n = 10 \ A_{cp} \sqrt{f_c} = 10 \times 66.93 \times 3.15 \sqrt{10745} = 218540$ lbf = 972 kN. Therefore, the ratio of measured shear strength to ACI nominal shear strength prediction is $\frac{\text{Test}}{\text{ACI}} = \frac{1412 \text{ kN}}{972 \text{ kN}} = 1.45$, which is the value reported in column 5 of Table 8 and is conservative. The ratio of measured shear strength to ACI nominal shear strength prediction for the 37 Japanese wall tests reported in column 5 of Table 8 has a mean of 1.49, a standard deviation of

0.31 and a coefficient of variation of 0.21.

Gupta and Rangan (1996) performed seven shear wall tests under static load. The walls have dimensions $h_w = l_w = 1000$ mm, h = 75 mm (Fig. 5), and a concrete strength of about 70 MPa. The horizontal shear reinforcement consists of ten bars on each face, spaced at 100 mm. For walls S1 to S6, the bars have cross-sectional area $A_v = 19.6$ mm², yield strength $f_y = 578$ MPa, and for wall S7, $A_v = 39.6$ mm², $f_y = 545$ MPa.

It turns out that the nominal shear strength based on Eqs. 11-31 and 11-33 controls for walls S1 and S4, and § 11.10.3 controls for the other walls (S2, S3, S5, S6 and S7). Table 9 shows that the mean of the ratio of experimental shear strength to nominal shear strength is 1.87. Thus, the ACI Code provisions are safe for these walls.

3.3 Recommendation

Since ACI 318-99 Chapter 21 falls outside the scope of work of the task force, no recommendation is made based on the Japanese tests. At this time, no change is recommended to ACI 318-99 Chapter 11 provisions concerning shear walls because the data are too limited (seven tests), the compressive strength of the walls tested is at the present limit of applicability of ACI 318-99 § 11.1.2, and the ACI predictions are safe.

4 NOTATION

- *a* shear span, distance between concentrated load and face of support
- A_{cp} area of concrete section, resisting shear, of an individual pier
- A_{cv} gross area of concrete section bounded by web thickness and length of section in the direction of shear force considered
- A_s area of non-prestressed tension reinforcement
- A_{ν} area of shear reinforcement perpendicular to flexural tension reinforcement within a distance s
- A_{vh} area of shear reinforcement parallel to flexural tension reinforcement within a distance s_2
- b_w web width
- *d* effective depth of section
- f_c ' specified compressive strength of concrete
- f_y specified yield strength of reinforcement
- *h* overall thickness of member
- h_w wall height
- l_n clear span measured from face to face of support
- l_w horizontal wall length
- M_u factored moment at section
- N_u factored axial load normal to cross section occurring simultaneously with V_u
- s spacing of shear reinforcement in direction parallel to longitudinal reinforcement
- s_2 spacing of shear reinforcement in direction perpendicular to longitudinal reinforcement, or spacing of horizontal reinforcement in wall.
- V_c nominal shear strength provided by concrete
- V_n nominal shear strength
- V_s nominal shear strength provided by steel reinforcement
- V_u factored shear force at section
- ρ_n ratio of area of distributed reinforcement parallel to the plane of A_{cv} to gross concrete area perpendicular to that reinforcement
- $\rho_w \qquad A_s/(b_w d)$

5 **REFERENCES**

American Concrete Institute (1999), "Building Code Requirements for Reinforced Concrete (ACI 318-99) and Commentary (ACI 318R-99)".

Foster, S. J. and Gilbert, R. I. (1998), "Experimental Studies on HSC Deep Beams," ACI Structural Journal, Vol. 95, No. 4, Jul.-Aug. pp. 382-390.

Gupta, A. and Rangan, B.V. (1996), "Studies in RC Structural Walls," Curtin Univ. Research Report 2/96, May.

Gupta, A. and Rangan, B.V. (1996), "HSC Structural Walls," ACI Structural Journal, Vol. 95, No. 2, Mar.-Apr., pp. 194-204.

Kabeyasawa, T. and Hiraishi, H. (1998), "Tests and Analysis of HSRC Shear Walls in Japan," ACI SP 176 HSC in Seismic Regions, French, C. and Kreger, M. ed., pp. 282-310.

Rangan, B.V. (1997), "Design of HSC, HPC Members," ACI SP 171-6, Advances in Concrete Technology, 3 rd. CANMET/ACI Int. Conf., Auckland, N.Z.

Rangan, B.V. (1997) "Rational Design of Structural Walls," Concrete International, Vol. 19, No. 11, Nov. pp. 29-33.

Rangan, B.V. (1998) "HPC, HSC Design Recommendations," Concrete International, Vol. 20, No. 11, Nov. pp. 63-68.

Tan, K.H., Kong, F. K. and Weng, L.W. (1998), "HSRC Deep and Short Beams: Shear Design Equations in North American and UK Practice," ACI Structural Journal, Vol. 95, No. 3, May-June, pp. 318-329.

Wallace, J. W. (1998), "Behavior and Design of HSRC Walls," ACI SP 176 HSC in Seismic Regions, French, C. and Kreger, M., ed., pp. 259-279.

Table 1: Comparison of Shear Strength of 68 high-strength (HSC),
32 medium-strength (MSC) and 133 low-strength concrete (LSC)
Deep Beams with Predictions by ACI Tan et al., 1998)

		V_n/V_{exp}	
	HSC	MSC	LSC
Mean	0.58	0.63	0.65
Standard Deviation	0.29	0.20	0.20
Coeff. of Variation	0.49	0.31	0.31

Table 2a Dimensions and Details for Beams B1.2, B2.0, B2.0B, B2.0C, B3.0, and B3.0B (Foster and Gilbert, 1998. See Fig. 2a)

Beam	Dimensior	ns in mm (1 in =	Web Rein	forcement	
	L	A D		V	H
B1.2	1450	850	1200	8 ×2 W 6	$5 \times 2W6$
				(W6@75)	(W6@175)
B2.0	1400	825	700	8 × 2 W 6	3 × 2 W 6
				(W6@75)	(W6@135)
B2.0B	1400	825	700	Nil	Nil
B2.0C	1400	825	700	$11 \times 2W6$	Nil
				(W6@50)	
B2.0D	1400	825	700	8 × 2 W 6	Nil
				(W6@75)	
B3.0	2100	1175	700	$13 \times 2W6$	3 × 2 W6
				(W6@75)	(W 6@135)_
B3.0B	2100	1175	700	Nil	Nil

Table 2b Dimensions and Details for Beams B2.0A and B3.0A (Foster and Gilbert, 1998. See Fig. 2b)

Beam	Dimensior	ns in mm (1 in =	Web Reinforcement					
	L	А	D	V	H			
B2.0A	1400	675	700	19 × 2 W 6 (W6@75)	3 × 2 W 6 (W6@135)			
B3.0A	2100	925	700	29 × 2W6 (W6@75)	3 × 2 W 6 (W6@135)			

					Age,
Beam	f_c 'MPa	f_t MPa	ρ kg/m ³	E_0 GPa	days
B1.2-1	91	6.23	2570	53.5	11
B1.2-2	96	6.41	2570	55.0	15
B1.2-3	80	6.30	2520	48.5	32
B1.2-4	80	6.31	2520	48.6	34
B2.0-1	83	5.94	2570	51.0	10
B2.0-2	120	7.13	2570	61.1	63
B2.0-3	78	6.22	2520	47.9	27
B2.0A-4	86	6.52	2520	50.2	66
B2.0B-5	89	6.30	2540	-	90
B2.0C-6	93	6.50	2580	-	92
B2.0D-7	104	7.20	2550	52.7	57
B3.0-1	80	5.84	2570	50.1	9
B3.0-2	120	7.15	2570	61.4	65
B3.0-3	77	6.20	2520	47.7	25
B3.0A-4	88	6.59	2520	50.7	75
B3.0B-5	89	6.30	2540	_	95

Table 3 Concrete material properties, Australian HSC Deep Beam tests (Foster and Gilbert, 1998)

Table 4- Experimental failure loads and mode of failure Australian HSC Deep Beam Tests (Foster and Gilbert, 1998)

Specimen	Failure load, kN	Failure mode
B3.0-1	1020	Tension failure
B3.0-2	1050	Tension failure
B3.0-3	1050	Tension failure
B3.0A-4	1550	Tension failure
B3.0B-4	870	Tension failure
B2.0-1	1590	Balanced failure
B2.0-2	1650	Tension failure
B2.0-3	1400	Tension failure
B2.0A-4	1900	Tension failure
B2.0B-5	1170	Tension failure
B2.0C-6	1460	Tension failure
B2.0D-7	1440	Tension failure
B1.2-1	2000	Crushing of loading
		column in compression
B1.2-2	2000	Crushing of loading
		column in compression
B1.2-3	2600	Balanced failure
B1.2-4	2100	Crushing of loading
		Column in compression

Specimen	Experimental	Predicted	V_n / V_{exp}
	Strength, kN	Strength, kN	
B3.0-1	1020	824	0.81
B3.0-2	1050	827	0.79
B3.0-3	1050	819	0.78
B3.0A-5	1550	1087	0.70
B3.0B-5	870	403	0.46
B2.0-1	1590	967	0.61
B2.0-2	1650	1162	0.70
B2.0-3	1400	937	0.67
B20.A-4	1900	984	0.52
B2.0A-5	1170	685	0.59
B2.0A-6	1460	934	0.64
B2.0D-7	1440	884	0.61
B1.2-3	2600	1787	0.69
Mean			0.66
Standard Deviation			0.103

Table 5: Comparison of Shear Strength of Australian HSC Deep Beam Testswith ACI 318-89 Predictions (Foster and Gilbert, 1998)

Table 6 - List of Walls in Japanese New RC Project: Horizontal Sectional Dimensions of all New RC Specimens (Kabeyasawa and Hiraishi, 1998)

Specimens	Col	umn	Wall panel			
	width b	depth d	thickness h length l_w			
NW*, W**, NO.*, M***	200 mm	200 mm	80 mm	1300 mm		

Table 7 - List of walls in Japanese New RC Project: horizontal sectional dimensions of concrete, reinforcement and loading conditions (Kabeyasawa and Hiraishi, 1998)

f		MPa	1001	1001	753	753	753	753	1079	1079	792	792	792	792	792	1420	792	792	810	810	810	810	810
Wall web	bar	mm	2-D6@150	2-D6@150	1-D6@150	1-D6@150	2-D6@150	2-D6@150	2-D6@150	2-D6@150	2-D6@400	2-D6@230	2-D6@150	2-D6@0	2-D6@e0	2-U6.4@122	2-D6@80	2-D6@55	2-D6@100	2-D6@100	2-D6@100	2-D6@100	2-D6@100
f_y		MPa	100	1001	1233	1233	1233	1233	1079	1079	1395	1395	1395	1395	1395	1395	1395	1395	810	810	1	810	810
Column	sub-tie	mm	2-D6@40	2-D6@40	2-5@40	2-5@40	2-5@40	2-5@40	2-D6@40	20D6@40	2-D6@50	2-D6@50	2-D6@50	2-D6@50	2-D6@e0	2-D6@50	2-D6@50	2-D6@50	2-D6@60	2-D6@60	1	2-D6@60	2-D6@60
fy		MPa	1262	1262	1233	1233	1233	1233	1372	1372	1295	1295	1395	1395	1395	1395	1395	1395	810	810	810	810	810
Column	spiral hoop	mm	D6@40	D6@40	5@40	5@40	5@40	5@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40	D6@40
fy		MPa	776	776	840	840	840	776	761	761	1009	1009	1009	1009	1009	1009	1009	848	848	848	848	848	848
Column	main bar	mm	12-D10	12-D10	12-D10	16-D10	16-D10	12-D13	12-D10	12-D10	16-D13	16-D13	16-D13	16-D13	16-D13	16-D13	16-D13	16-D13	12-D10	12-D10	12-D10	12-D10	12-D10
Shear	Span Ratio		2.00	1.33	2.00	2.00	2.00	2.00	0.66	0.66	1.33	1.33	1.33	1.33	2.00	1.33	1.33	1.33	2.00	2.00	2.00	2.00	2.00
Axial	load	kN	1764	1764	1372	1568	1372	1568	1764	2313	1568	1568	1568	2617	1568	1568	1568	1568	1764	1921	1862	1470	1666
f_c ,		MPa	87.6	93.6	55.5	54.6	60.3	65.2	103.3	137.5	65.1	70.8	71.8	103.4	76.7	74.1	71.5	76.01	62.6	68.6	66.5	61.4	59.7
Wall			NW-1	NW-2	NW-3	NW-4	NW-5	9-WN	W-08	W-12	NO. 1	NO. 2	NO. 3	NO. 4	NO. 5	NO. 6	NO. 7	NO. 8	M35X	M35H	P35H	M30H	MW35H

Table 8 - HSC Wall Tests Conducted in Japan (Wallace 1998)

Specimen	V _{max}	V _{max}	V_Eq.21.7	V _{max}	V	V _{max} / MPa	$\rho_n f_{y}$	$A_{\rm vf} f_{\rm v}$	$\rho_t f_{yt}$						
ĪD	kN	$\overline{V @ M}$	$\frac{n}{V \otimes M}$	\overline{V} Eq.21.7	$\frac{1000}{V Eq. 10}$	f'/MD_{a}	$\frac{f''(x,y')}{f'}$	$\frac{y + y}{\Delta f'}$	f_{c}						
		- <u>u</u> n	V _u WIVI _n	· <u>n</u> =q==1	<i>v</i> _n Eq.10	$\sqrt{J_c}/MFa$	J _c	n _{cv} J _c							
NW-1 (1)	1062	1.03	0.91	1.13	1.67	0.83	0.061	0.16	0.23						
NW-2 (2)	1468	0.95	0.61	1.55	2.23	1.12	0.057	0.15	0.21						
NW-3 (3)	717	0.84	0.52	1.62	1.42	0.71	0.036	0.22	0.24						
NW-4 (4)	784	0.75	0.42	1.78	1.48	0.78	0.037	0.29	0.25						
NW-5 (5)	900	0.86	0.69	1.25	1.54	0.85	0.067	0.29	0.22						
NW-6 (6)	1056	0.86	0.59	1.45	1.52	0.96	0.062	0.31	0.21						
W-08 (7)	1670	0.35	0.24	1.48	2.42	1.21	0.056	0.14	0.24						
W-12 (8)	1719	0.32	0.22	1.46	2.16	1.08	0.042	0.10	0.18						
NO. 1 (9)	1101	0.30	0.13	2.25	1.21	1.00	0.024	0.48	0.31						
NO. 2 (10)	1255	0.33	0.17	1.90	1.32	1.10	0.039	0.46	0.28						
NO. 3 (11)	1379	0.35	0.22	1.60	1.44	1.20	0.059	0.47	0.31						
NO. 4 (12)	1697	0.37	0.20	1.84	1.50	1.23	0.041	0.32	0.22						
NO. 5 (13)	1159	0.45	0.30	1.50	1.17	0.97	0.055	0.44	0.29						
NO. 6 (14)	1412	0.33	0.23	1.45	1.45	1.21	0.126	0.50	0.30						
NO. 7 (15)	1499	0.36	0.23	1.57	1.57	1.30	0.111	0.51	0.31						
NO. 8 (16)	1639	0.37	0.23	1.66	1.66	1.38	0.151	0.51	0.29						
M35X (17)	1049	0.63	0.54	1.17	1.95	0.98	0.104	0.25	0.15						
M35H (18)	1055	0.61	0.55	1.12	1.87	0.94	0.094	0.23	0.14						
P35H(19)	959	0.57	0.55	1.04	1.73	0.98	0.097	0.24	0.07						
M30H (20)	1020	0.67	0.58	1.15	1.91	0.96	0.106	0.25	0.16						
MW35H (21)	1012	0.63	0.54	1.16	1.91	0.96	0.109	0.26	0.16						
MAE03 (22)	1460	0.27	0.19	1.46	2.19	1.10	0.066	0.25							
MAE07(23)	1676	0.28	0.18	1.51	2.31	1.26	0.110	0.29							
W48M6 (24)	1516	0.57	0.52	1.10	1.62	0.81	0.054	0.10							
W48M4 (25)	1479	0.61	0.55	1.12	1.58	0.79	0.050	0.09							
W72M8 (26)	2066	0.57	0.43	1.33	2.21	1.10	0.088	0.16							
W72M6 (27)	2015	0.59	0.46	1.29	2.15	1.08	0.081	0.15							
W72M8 (28)	2128	0.59	0.48	1.23	2.04	1.02	0.071	0.13							
W96M8(29)	2483	0.55	0.38	1.43	2.39	1.91	0.092	0.17							
SMZ01 (30)	1154	0.37	0.29	1.30	1.25	0.62	0.025	0.09	0.02						
SMZ03 (31)	2081	0.33	0.14	2.35	2.25	1.13	0.025	0.18	0.02						
W8N18(32)	882	0.78	0.71	1.85	1.85	0.92	0.137	0.18	0.15						
W8N13 (33)	762	0.80	0.87	1.53	1.53	0.77	0.126	0.17	0.14						
W8N8H (34)	689	0.76	0.92	1.38	1.38	0.69	0.126	0.20	0.13						
TAK01(35)	971	0.59	0.62	1.52	1.52	0.76	0.077	0.17	0.10						
TAK02(36)	987	0.55	0.59	1.55	1.55	0.77	0.111	0.20	0.10						
TAK03(37)	1288	0.52	0.43	2.02	2.02	1.01	0.077	0.17	0.10						
V_n = the larger of	of $\begin{cases} A_{cv} 6 \end{cases}$	$\sqrt{\frac{f_c}{\mathrm{ps}i}}; \frac{A_v f_y}{4}$	$\left \right\} \le A_{cv} 10 \sqrt{\frac{f}{ps}}$	<u>,</u> Si		(10a)									
V_n = the larger of	of $\begin{cases} A_{cv} = \frac{1}{2} \end{cases}$	$\frac{1}{2}\sqrt{\frac{f_c'}{\text{MPa}}};\frac{A}{2}$	$\left \frac{f_y}{4}\right \le A_{cv} 0.8$	$3\sqrt{\frac{f_c'}{\text{MPa}}}$	$V_n = \text{the larger of} \left\{ A_{cv} \frac{1}{2} \sqrt{\frac{f_c}{\text{MPa}}}; \frac{A_v f_y}{4} \right\} \le A_{cv} 0.83 \sqrt{\frac{f_c}{\text{MPa}}} $ (10b)										

Walls	S1	S2	S3	S4	S5	S6	S7
f' _c MPa	79.3	65.1	69.0	75.2	73.1	70.5	71.2
f'_c psi	11500	9 440	10 000	10 900	10 600	10 220	10 320
Axial kN	0	610	1 230	0	610	1 230	610
Axial kips	0	137.1	276.5	0	137.1	276.5	137.1
$10\sqrt{f_c^{\prime}}hd$	99.651	90.286	92.925	97.017	95.672	93.942	94.600
(Eq. 11.31) V	32.885	57.214	85.965	32.015	58.992	86.300	58.572
(Eq. 11.33) V _s	40.712	40.712	40.712	40.712	40.712	40.712	77.555
$V_c + V_s$ kips	73.597			72.73			
Fail kN	427.8	719.6	850.7	600.0	790.2	970.0	800.0
Fail kips	96.18	161.78	191.25	134.89	177.65	218.08	179.86
Test / ACI	1.31	1.79	2.06	1.85	1.86	2.32	1.91

Table 9 Australian Shear Wall Tests (Gupta and Rangan, 1996)

mean = 1.87

standard deviation = 0.31

CoV=0.16

Fig 1 Shear Strength of Deep Beams (Tan et al., 1998, Foster and Gilbert, 1998)

Fig 2a – Deep Beam Test (Foster and Gilbert, 1998). See Table 2a

Fig 2b – Deep Beam Test (Foster and Gilbert (1998). See Table 2b

Fig 4 – Wall shear strength: ACI 318-95 (Wallace, 1998)

